Research Team: Mathematical Analysis
Research Activities
The research group in Mathematical Analysis at the University of Sassari aims to study new theories, new methodologies, and new theorems in the field of mathematical analysis. The main active research areas are: Linear and nonlinear analysis; Existence, non-existence, and multiplicity of solutions to elliptic partial differential equations or systems of equations; Qualitative properties of solutions to elliptic partial differential equations or systems of equations; Bifurcation problems and symmetry breaking for solutions to partial differential equations; Reaction-diffusion equations; Mathematical models in life sciences; Singularly perturbed problems; Self-adjoint and non-self-adjoint spectral theory, with applications to quantum mechanics, electromagnetism, fluid dynamics, and linear elasticity theory; Stability and instability of solutions to partial differential equations as the geometry of the domain varies; Unitary representations of the free group and other similar discrete groups; Study of complex systems.
Members (Permanent Staff)
Tim Steger, steger@uniss.it , professore ordinario, SSD: MATH-03/A Analisi Matematica, Scopus: 6603997908
Francesca Gladiali, fgladiali@uniss.it , professore associato, SSD: MATH-03/A Analisi Matematica, Scopus: 23003923700, https://orcid.org/0000-0003-0382-8658
Francesco Ferraresso, fferraresso@uniss.it , Ricercatore RTDa-PNRR, SSD: MATH-03/A Analisi Matematica, Scopus: 56444391000, https://orcid.org/0000-0002-4399-141X
Carlo Andrea Pensavalle, pensa@uniss.it , ricercatore, SSD: MATH-03/A Analisi Matematica, Scopus: 6506337341
Relevant Publications
Hebisch W., Kuhn G., Steger T. (2022). FREE GROUP REPRESENTATIONS: DUPLICITY AND ODDITY ON THE BOUNDARY. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, vol. 375, p. 1825-1860, ISSN: 1088-6850, doi: 10.1090/tran/8546
-Spectral analysis and domain truncation for Maxwell's equations Bögli, S., Ferraresso, F., Marletta, M., Tretter, C. Journal des Mathematiques Pures et Appliquees, 2023, 170, pp. 96–135
-Spectral properties of the inhomogeneous Drude-Lorentz model with dissipation Ferraresso, F., Marletta, M. Journal of Differential Equations, 2023, 346, pp. 313–346
-On the number of critical points of solutions of semilinear equations in R^2, Gladiali, F., Grossi, M. American Journal of Mathematics, 2022, 144(5), pp. 1221–1240
-Nonradial solutions for the Hénon equation in R^N, Gladiali, F., Grossi, M., Neves, S.L.N. Advances in Mathematics, 2013, 249, pp. 1–36
Research Projects
Eins, Spoke 6, Digital transformation nell’ambito dell’Ecosistema dell’Innovazione eINS Ecosystem Of Innovation For Next Generation Sardinia, PNRR (Gladiali e Ferraresso partecipanti)
Studio di modelli nelle scienze della vita, Uniss DM 737/2021 risorse 2022 – 2023 (Gladiali PI);
Proprietà qualitative delle soluzioni di equazioni ellittiche, progetto GNAMPA 2023 (Gladiali partecipante);
PRIN 2022-Pattern formation in nonlinear phenomena (Gladiali partecipante)
Thesis/internship topics
Qualitative study of dynamical systems
Mathematical modeling of biochemical phenomena